Feasibility of fluidized-bed bioreactor for remediating waste gas containing H2S or NH3.

نویسندگان

  • Y C Chung
  • C H Liu
  • C Huang
چکیده

Pseudomonas putida for H2S and Arthrobacter oxydans for NH3 were immobilized with Ca-alginate and packed inside glass columns to form fluidized-bed bioreactors. The feasibility of the lab-scale bioreactor for the treatment of H2S or NH3 was examined. Phosphate salt, being added to the nutrient solution as buffer solution, may chelate with Ca2+ in the Ca-alginate beads, resulting in the disintegration of gel structure. When the buffer capacity of the phosphate solution was over the critical point of 33.5 mM/pH, all calcium ions in the bead were released and beads were broken. Increasing liquid flowrate and inlet gas concentration favored to H2S and NH3 removal. Carbon source addition was essential and facilitated malodorous removal for this system. Removal capacity increased with inlet concentration. However, increasing pattern was dependent of H2S or NH3. The result clearly indicated that bioreactor was suitable to be applied for the industry of livestock farm for removing wastegas containing H2S or NH3.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biotreatment of hydrogen sulfide- and ammonia-containing waste gases by fluidized bed bioreactor.

Gas mixtures of H2S and NH3 are the focus of this study of research concerning gases generated from animal husbandry and treatments of anaerobic wastewater lagoons. A heterotrophic microflora (a mixture of Pseudomonas putida for H2S and Arthrobacter oxydans for NH3) was immobilized with Ca-alginate and packed into a fluidized bed reactor to simultaneously decompose H2S and NH3. This bioreactor ...

متن کامل

Two-stage biofilter for effective NH3 removal from waste gases containing high concentrations of H2S.

A high H2S concentration inhibits nitrification when H2S and NH3 are simultaneously treated in a single biofilter. To improve NH3 removal from waste gases containing concentrated H2S, a two-stage biofilter was designed to solve the problem. In this study, the first biofilter, inoculated with Thiobacillus thioparus, was intended mainly to remove H2S and to reduce the effect of H2S concentration ...

متن کامل

Removal of high concentration of NH3 and coexistent H2S by biological activated carbon (BAC) biotrickling filter.

High efficiency of NH3 and H2S removal from waste gases was achieved by the biotrickling filter. Granular activated carbon (GAC), inoculated with Arthrobacter oxydans CH8 for NH3 removal and Pseudomonas putida CH11 for H2S removal, was used as packing material. Under conditions in which 100% H2S was removed, extensive tests to eliminate high concentrations of NH3 emission-including removal char...

متن کامل

Theoretical and Experimental Investigation of SO2 Adsorption from Flue Gases in a Fluidized Bed of Copper Oxide

Among the air pollutants, sulfur dioxide has been given special emphasis for posing dangers to the environment. SO2 emissions in the air have harmful effects on human health and the environment. Respiratory diseases and exacerbation of heart diseases are among dangerous symptoms for human health, especially when high concentrations of SO2 are emitted. Therefore, in the present study, a wide var...

متن کامل

Biotreatment of H2S- and NH3-containing waste gases by co-immobilized cells biofilter.

Gas mixture of H2S and NH3 in this study has been the focus in the research area concerning gases generated from the animal husbandry and the anaerobic wastewater lagoons used for their treatment. A specific microflora (mixture of Thiobacillus thioparus CH11 for H2S and Nitrosomonas europaea for NH3) was immobilized with Ca-alginate and packed inside a glass column to decompose H2S and NH3. The...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of environmental science and health. Part A, Toxic/hazardous substances & environmental engineering

دوره 36 4  شماره 

صفحات  -

تاریخ انتشار 2001